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We study an interacting single-level quantum dot weakly coupled to three electrodes. When two electrodes
are biased by voltages with opposite polarities, while keeping the third lead �the stem� grounded, the current
through the stem is a measure of electron-hole asymmetry of the dot. In this setup, we calculate the stem
current for both metallic and ferromagnetic �collinearly polarized� leads and discuss how the three-terminal
device gives additional information compared to the usual two-terminal setup. We calculate both the sequential
and cotunneling contributions for the currents. For the latter part, we include a regularization procedure for the
cotunneling current, which enables us to also describe the behavior at the charge degeneracy points.
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I. INTRODUCTION

A systems consisting of a quantum dot weakly coupled to
external leads have been extensively studied both for
unpolarized1–3 and polarized leads.4–9 These all dealt with
two-terminal transport properties, with a third electrode act-
ing as a capacitively connected gate.

System with more than two terminals has a long history in
mesoscopic physics.10 The functionality added by the third
lead is of importance for some applications, in particular, the
so-called Y-branch structures.11–14 These studies consider
open mesoscopic systems, where correlation effects can be
neglected. Some recent works have studied the opposite case
where correlations are important, e.g., the study of current-
current correlations in a three-terminal device,15,16 Kondo
peaks in a three- and/or four-terminal setup,17,18 and crossed
carbon nanotubes.19–21 Here, we consider a multiterminal
quantum dot and, in particular, the nonlinear response, which
brings in information about the structure of the quantum dot
as well as about the magnetization of side branches.

The system we study in detail consists of a single-level
quantum dot coupled to three leads �Fig. 1�. We allow col-
linear spin polarization of leads, so that some of them can be
polarized while others are kept unpolarized. For the sake of
simplicity, the polarization, if any, is assumed to be com-
plete. To lift the spin degeneracy, we apply a magnetic field
to the dot collinear with polarization of the leads. We study
the current through the central junction �referred to as a
stem� and its dependence on the applied voltage, magnetic
field, position of dot’s energy states, and orientation of leads’
polarization. Except for the limiting case of noninteracting
electrons, the exact solution is not known, and approximative
methods are widely applied. In the typical experimental
setup, a coupling between the dot and the lead is of order of
�eV while temperature is of order of meV or higher; there-
fore, it is often justified to perform perturbation expansion in
a small parameter � /kBT. We cut off the perturbation expan-
sion on second order.

In first order, we derive the sequential tunneling current
through a central electrode �Eq. �9��. When the system is
biased symmetrically, Vl=V and Vr=−V, the stem current is
an even function of applied voltage and an odd function of

the gate voltage �Fig. 4�. The stem current can be either
negative or positive depending on the nature of the electron
transport.

To understand this, we first observe that the current from
the left to the right lead occurs at low temperatures via only
two charge states and can be, predominately, either electron-
or holelike. If the energy difference between the �+1 and �
electron states is positive, the transport is electronlike and
holelike if it is negative, with � standing for the occupation
number. For the electronlike case, the �+1 state can decay
via an electron leaving through the stem, whereas for the
holelike case, the � state can decay by the electron entering
from the stem. Hence, the stem current is zero for the
electron-hole symmetric case.

The three-terminal setup therefore measures the electron-
hole asymmetry, and in this respect, it is similar to
thermopower.22 Interestingly, a change between the two situ-
ations above can be induced by the magnetic field applied to
the dot which modifies the physics significantly �see Fig. 5�.
Moreover, in a three-terminal setup with magnetized side
branches and the nonmagnetic stem, the current value en-
ables one to distinguish among four magnetization align-
ments �Fig. 6�.

In second order, the total current is increased by virtual
cotunneling processes for these values of the gate voltage for
which the sequential tunneling is exponentially suppressed.
Furthermore, the cotunneling correction lowers the sequen-
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FIG. 1. The three-terminal device. The occupation number is
controlled via the gate by applying the voltage Vg. The stem chemi-
cal potential, �s=0, serves as the reference level. The left and right
leads are biased in push-pull manner with �l=eV and �r=−eV.
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tial current maxima and gives rise to additional broadening
of order of the sum of all couplings �s+�l+�r, and hence,
the total broadening is the sum of the thermal part and the
latter. However, we will show that the cotunneling current
does not change the sensitivity toward electron-hole asym-
metry, and therefore, the qualitative picture described above
still holds to higher order in tunneling �see Fig. 2�.

In Appendix, the exact solution for noninteracting elec-
trons is compared with the perturbative treatment and even
though the renormalization of level positions also contribut-
ing to the second order current was neglected, we achieve
good agreement between the two.

II. MODEL HAMILTONIAN

The model Hamiltonian of the quantum dot connected to
any number of unpolarized leads is

H = HL + HT + HD, �1�

where

HL = �
j

HL
j = �

j
�
k�

� j,k�cj,k�
† cj,k� �2�

describes the uncoupled leads indexed by j, while cj,k�
† and

cj,k� form an orthogonal set of creation and annihilation op-
erators in lead j.

The dot is described by the Hamiltonian

HD = �
�

��0 − �B�d�
†d� + Un↑n↓, �3�

with a single electron of the orbital energy �0, the Coulomb
repulsion energy U, magnetic field B, �=1 for a spin-up
electron and �=−1 for a spin-down electron, d�

† and d�

forming a set of orthogonal creation and annihilation opera-
tors for the dot, and n�=d�

†d� being an occupation number
operator. The tunneling processes between the leads and the
central region are taken into account via the tunneling
Hamiltonian

HT = �
j

�
k�

�tj,k�cj,k�
† d� + H.c.� , �4�

where tj,k� is a spin-dependent tunneling amplitude. To in-
clude the complete magnetization of one of the leads, say
lead j, one should limit the corresponding Hilbert space to
one spin direction replacing � by ↑ or ↓.

III. SEQUENTIAL TUNNELING REGIME

The simplest situation we study is the sequential tunneling
regime, also called the weak tunneling regime. It is assumed
that the time between tunneling events is the largest time
scale in the problem, so that there is no coherence between
successive tunneling processes. If there is no bias applied,
the distribution function of different states is given by the
equilibrium Gibbs function. With an applied voltage differ-
ence between the electrodes, the induced nonequilibrium dis-
tribution function needs to be determined.

To this end, we calculate the transition rates between dif-
ferent dot’s states. Since we consider the weak tunneling
regime, the Fermi’s golden rule is sufficient to tackle this
problem. We define the transition rates ���

j as the rate for a
process that changes the state of the dot from � to � due to
tunneling through junction j. Assuming a continuous density
of states inside the electrodes, it follows that the tunneling
rates are proportionate to the Fermi function, ��+1,�

j

=� j
0n���+1−��−� j�, if an electron jumps onto the dot, and

��−1,�
j =� j

0�1−n���−1−��−� j�� for the opposite process.
Here, � j is a chemical potential of reservoir j, � j

0

�2��tj�2	 j, with 	i being the density of states in lead j. To
include the collinear polarizations Pi of the leads, spin-
dependent tunneling rates �i�

0 = 1
2�i

0�1+�Pi� are introduced.
Having found the transition rates, we can write down

master equations describing the dynamical behavior of the
distribution function P�, and since we are only interested in
the steady state solution, we have

�
− �↑0 − �↓0 �0↑ �0↓ 0

�↑0 − �2↑ − �0↑ 0 �↑2

�↓0 0 − �2↓ − �0↓ �↓2

0 �2↑ �2↓ − �↑2 − �↓2

	

�

P0

P↑

P↓

P2

	 = 0, �5�

where ���=� j���
j is a total contribution from all the leads to

the transition rate from state � to state �, while P0, P↑, P↓,
and P2 are the empty, spin-up, spin-down, and double occu-
pation state distribution functions, respectively. The terms
with a minus sign give the rate at which a given state on the
left-hand side decays, while the plus-sign terms describe the
opposite processes. In addition to these equations, the prob-
ability conservation law P0+ P↑+ P↓+ P2=1 has to be used.

The knowledge of the distribution functions allows one to
find the net current flowing through junction i,

Js[
eΓ
h̄

]

-0.015
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�0/Γ−40 −20 20

FIG. 2. �Color online� The stem current �solid, red� being the
sum of the sequential part �dotted, blue� and the cotunneling
�dashed, green�. The sequential contribution gives sufficient quali-
tative description. For this plot, leads are unpolarized with �l=�r

=�s=� /3, U=20�, B=5�, kBT=2�, and V /�=1.
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Ji = −
e

�
�

�

���+1,�
i − ��−1,�

i �P�. �6�

This should be understood as a difference between the num-
ber of electrons incoming to the dot and deoccupating it,
times the electron charge −e�0.

We choose the Fermi level of the stem reservoir to be our
reference level, �s=0, throughout the text and in all dia-
grams.

The solutions to Eq. �5� are

P0 =
1

D
��0↑�↑2��0↓ + �2↓� + �0↓�↓2��0↑ + �2↑�� , �7a�

P↑ =
1

D
��↑0�0↓��↓2 + �↑2� + �↑2�2↓��↓0 + �↑0�� , �7b�

P↓ =
1

D
��↓0�0↑��↓2 + �↑2� + �↓2�2↑��↓0 + �↑0�� , �7c�

P2 =
1

D
��2↑�↑0��0↓ + �2↓� + �2↓�↓0��0↑ + �2↑�� , �7d�

with

D = ��↓0�0↑ + �2↑�↑0���↓2 + �2↓�

+ ��0↓�↓2 + �↑2�2↓���↑0 + �0↑�

+ ��0↑�↑2 + �↓2�2↑���↓0 + �0↓�

+ ��↑0�0↓ + �2↓�↓0���↑2 + �2↑� . �8�

Using Eq. �6�, the stem current becomes

Js = −
e

�
���↑0

s + �↓0
s �P0 + ��2↑

s − �0↑
s �P↑ + ��2↓

s − �0↓
s �P↓

− ��↓2
s + �↑2

s �P2� . �9�

The above expression is a complicated combination of the
Fermi functions, and analytic treatment is not further pos-
sible. We discuss numerical results in Sec. V.

IV. COTUNNELING REGIME

As discussed in the introduction, one could expect the
cotunneling current to modify the lowest order current sig-
nificantly. However, this turns out not to be the case, since
the cotunneling current also has nodes in the particle-hole
symmetric points and only gives small corrections to the
overall shape of the current versus gate or voltage curves.

In the cotunneling regime, two-electron processes come
into play. An electron is transferred between lead j and lead
i �via an intermediate classically forbidden state� in two suc-
cessive tunneling events, across the quantum dot. For the
calculation of the two-electron rates, we need to consider the
different starting configurations �empty, single, and double
occupied�. The probabilities that a given state is occupied are
given by Eqs. �7a�–�7d�. Furthermore, there are two types of
processes that should be considered: i.e., non-spin-flip pro-

cesses that do not change dot’s magnetization and spin-flip
processes leading to reversal of spin direction �see Fig. 3�.
The latter contribute directly to the current as well as modify
the probabilities P� via spin flips caused by the interaction of
the dot with the lead. We find the rates for these processes
employing the generalized Fermi’s golden rule,

� fi =
2�

�
�
f �T�i��2�Ef − Ei� , �10�

for the transition from the initial state �i� of energy Ei to the
final state �f� of energy Ef. The transition operator T is de-
fined as

T = HT + HT
1

Ei − H0
T , �11�

with H0=HL+HD. The first nonvanishing transition rate for
the process which transfers the electron between the elec-
trodes appears in the perturbation expansion in second order;
thus, the cotunneling process is quadratic in couplings �.

The cotunneling events are two-particle processes and
therefore occur only between pairs of the leads. Hence, the
cotunneling current through junction i can be expressed as

the sum of the currents between any pair of leads J̃ij
� , i.e., the

currents between leads i and j in regime �, weighted by the
appropriate probability P�,

J̃i = �
j
��

�

P�J̃ij
� + �

�

P�J̃ij
�,sf . �12�

The sum runs over dot’s states �=0, ↑ , ↓ ,2, and for empha-

sis, we divided the current into the non-spin-flip part J̃ij
� and

the spin-flip part J̃ij
�,sf �present for the single occupation

only�.

A. Non-spin-flip cotunneling current

We exemplify the derivation of the current between a pair
of leads by the case of the empty dot. The initial state �i�
= ��1 , . . . ,�N ,0� consists of a tensor product of lead’s states
��i� and the dot’s state �0�. The electron can be transferred
from lead i into lead j via either a spin-up or spin-down state
of the dot, depending on a spin of the electron entering the
intermediate region. Because the two corresponding final
states of the leads are different, �f�= ��1 , . . . ,�i−� , . . . ,� j

�t

FIG. 3. The comparison of a cotunneling event for the dot oc-
cupied by a spin-up electron with the spin-flip process �on the right�
and without �on the left�. In case of inelastic processes, the final
state of the dot and the leads is the same for both paths resulting in
the interference.
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+� , . . . ,�N ,0�=ci,k�cj,k��
† �i�, there is no interference between

electron’s paths, and we find the rates � j�i�
0 for these two

processes separately and add them up to get the total tunnel-
ing rate in this regime. Thus, the current between the pair of
leads i , j is given by

J̃ij
0 = − e�

�

�� j�i�
0 − �i�j�

0 � , �13�

which is the rate for the process bringing the electron from
lead i to lead j through the empty state, minus the rate for the
opposite process, multiplied by the electron charge −e. We
substitute the tunneling Hamiltonian HT �Eq. �4�� into 
f �T�i�
and after a number of standard calculations, where we use �i�
that the distribution function of electron states in the leads is
given by the Fermi-Dirac distribution functions and �ii� the
assumption of a constant tunneling density of states, we ar-
rive at

� j�i�
0 =

1

h
�i�

0 � j�
0 �

−�

�

d�
1

�� − ���2n�� − �i��1 − n�� − � j�� .

�14�

Employing Eq. �13�, the current between leads i and j
through the empty dot becomes

J̃ij
0 = −

e

h
�i

0� j
0�

−�

�

d�� 1

�� − �↑�2 +
1

�� − �↓�2

�n�� − �i� − n�� − � j�� , �15a�

where we took �i
0=�i↑

0 =�i↓
0 . If one neglects the inelastic pro-

cesses, the currents through the single occupied dot may be
found by analogy,

J̃ij
� = −

e

h
�i

0� j
0�

−�

�

d�� 1

�� − ���2 +
1

�� − ��̄ − U�2

�n�� − �i� − n�� − � j�� , �15b�

with �̄=−�. The expression for the current in the presence of
spin flipping will be derived below as it needs more atten-
tion.

Finally, the currents Jij
2 in the remaining regime of the

double occupation read

J̃ij
2 = −

e

h
�i

0� j
0�

−�

�

d�� 1

�� − �↑ − U�2 +
1

�� − �↓ − U�2

�n�� − �i� − n�� − � j�� . �15c�

These expressions are, however, divergent and we need to
improve on the second order perturbation theory �in �� to
regularize these divergences. Before we follow the regular-
ization procedure in Sec. IV C, we study the current flowing
with reversal of the spin accumulated on the dot.

B. Spin-flip cotunneling current

As long as we consider the limit of noninteracting elec-
trons, U=0, the inelastic processes do not affect the current
at all, and the above description is completely sufficient. In

Appendix, we compare the perturbative result with the exact
results obtainable when neglecting interactions.

The derivation of the tunneling rate and the current be-
tween a pair of leads in the presence of spin-flip processes is
similar to one used in the previous section. Here, we just cite
the result

J̃ij
�,sf = − e�� j�̄i� − �i�̄j�� , �16�

with the tunneling rate

� j�̄i� =
1

h
�i�

0 � j�̄
0 �

−�

�

d�� 1

� − ��̄ − U
−

1

� − ��̄
2


n�� − �i��1 − n�� − � j − ��̄��� . �17�

This expression differs from that for the cotunneling current
without spin-flip processes, �Eq. �15b��, as the interference
term appears there �Fig. 3�. Furthermore, the chemical poten-
tial of lead j is shifted due to the energy gap, ��̄����̄−��,
resulting from the Zeeman splitting. It is convenient to re-
write the expression n��−�i��1−n��−� j +��̄���=nB�� j −�i

+��̄���n��−� j −��̄��−n��−�i�� so that it has the same form
as Eqs. �15a�–�15c�, i.e., it is proportional to the Fermi func-
tions’ difference, with nB standing for the Boltzmann func-
tion. In the next section, it will come to light that terms of
this type undergo the regularization scheme.

C. Regularization procedure

In general, for the non-spin-flip cotunneling current,
the problematic integrand is a product of the divergent term
��−�0�−2 and the Fermi functions’ difference, denoted as
f����n��−�i�−n��−� j�.

To deal with this divergence, we follow the regularization
scheme proposed by Turek and Matveev22 and Koch et al.23

and add to the denominator a lifetime broadening �2, de-
scribing the tunneling broadening of the intermediate state,
i.e., ���. The whole trick is to partition this integral into
two parts, from which the first can be a posteriori identified
as the energy conserving process, and hence, the sequential
tunneling contribution, while the second term describes the
regularized cotunneling processes. This is done as

� d�
f���

�� − �0�2 + �2 =� d�
f��0�

�� − �0�2 + �2

+� d�
f��� − f��0�

�� − �0�2 + �2

→
�

���
f��0� + lim

�→0+
� d�

f��� − f��0�
�� − �0�2 + �2 ,

�18�

where the last line is in the limit of small �. The first term
corresponds to the transitions on resonance �or “on shell”�,
where energy is conserved in each tunneling event. These
processes give rise to a current which is linear in � after
inserting into Eq. �12� and using that ���. We can therefore
omit the first term, since it has already been calculated within
the much simpler master equation scheme in Sec. III. The
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remaining term now corresponds to the proper regularized
second order contribution to the current. At this point, it is
important to realize that this procedure does not capture all
second order terms because the renormalization of the dot
state due to tunneling is not included.1 The effect of renor-
malization, however, is easily incorporated by adding these
terms �linear in �� to the energies of the dot states when
doing the master equations. The second order correction �in
�� can then be extracted from the master equation result.
Here, we do not incorporated them since they are unimpor-
tant and merely give a shift of the gate voltage. On the other
hand, for some cases, e.g., noncollinear magnetization, they
cannot be neglected because they give rise to off-diagonal
elements in the density matrix.7

Now, returning to the expression �18�, we can evaluate it
analytically by employing the useful identity,

lim
�→0+

� d�
f��� − f��0�

�� − �0�2 + �2 = lim
�→0+

�

��0
Re � d�

f���
� − �0 + i�

,

�19�

and summing over the residues. The final result becomes

�
−�

� d�

�� − �0�2 �n�� − �i� − n�� − � j��

→ Re� �

2�i
��1��0,�i� − �1��0,� j��� . �20�

The arrow indicates that the divergent integral has been regu-
larized by the procedure explained above. For convenience,
we introduced a shorthand notation for the polygamma func-
tion of nth order,

�n��,�� � �n�1

2
−

�

2�i
�� − �� . �21�

Below, we list the non-spin-flip currents �Eqs.
�15a�–�15c�� after the regularization �for more detailed deri-
vation of regularized formulas, see Ref. 24�,

J̃ij
0 = −

e

h
�i

0� j
0 Re� �

2�i
��1��↑,�i� − �1��↑,� j��

+
�

2�i
��1��↓,�i� − �1��↓,� j��� , �22a�

J̃ij
� = −

e

h
�i

0� j
0 Re� �

2�i
��1���,�i� − �1���,� j��

+
�

2�i
��1���̄ + U,�i� − �1���̄ + U,� j��� , �22b�

J̃ij
2 = −

e

h
�i

0� j
0 Re� �

2�i
��1��↑ + U,�i� − �1��↑ + U,� j��

+
�

2�i
��1��↓ + U,�i� − �1��↓ + U,� j��� . �22c�

The current in the presence of the inelastic scattering �Eq.
�16�� causes more problems as the interference term

emerges. Using the partial fraction decomposition, it turns to
be

� 1

� − �1
−

1

� − �2
2

=
1

�� − �1�2 +
1

�� − �2�2

−
2

�1 − �2
� 1

� − �1
−

1

� − �2
 , �23�

with the type of divergence ��−�0�−1. The identity,

lim
�→0+

� d�
g��� − g��1�

�� − �1�2 + �2 = lim
�→0+

Re � d�
f���

� − �1 + i�
,

�24�

where g������−�1+ 2�2

�1−�2
�f���, allows one to find the regu-

larized expression for this type of divergence as well,

�
−�

� d�

� − �0
�n�� − �i� − n�� − � j��

→ Re��0���0,� j� − �0��0,�i��� , �25�

and after some algebra, the inelastic tunneling rates become

� j�̄i� =
1

h
�i�

0 � j�̄
0 nB�� j + ��̄� − �i�


Re� �

2�i
��1���̄ + U,� j + ��̄�� − �1���̄ + U,�i��

+
�

2�i
��1���̄,� j + ��̄�� − �1���̄,�i��

+
2

U
��0���̄ + U,� j + ��̄�� − �0���̄ + U,�i��

−
2

U
��0���̄,� j + ��̄�� − �0���̄,�i��� , �26�

which substituted to Eq. �16� gives a proper limit of nonin-

teracting electrons, limU→0 J̃ij
�,sf =0. Note that current be-

tween each set of leads �involving spin’s reversal or not�
fulfills the principle of detailed balance �vanishes for �i
=� j� and, hence, the total cotunneling current is equal to
zero, when the chemical potentials of the leads are at the
same level.

V. RESULTS

In Fig. 4, the stem current dependence upon the bias volt-
age V and the gate voltage �0 for no magnetic field �the left
plot� and for magnetic field B=5� �right� is shown. Bright
regions correspond to positive values of the current, while
dark areas to negative ones. It is apparent that the stem cur-
rent is an even function of bias V and an odd function of the
orbital energy �0 with respect to the particle-hole symmetry
line �0=−U /2. Therefore, we restrict our discussion to the
parts of the plots where V�0 and �0�−U /2. By performing
the particle-hole transformation, the behavior in region,
where �0�−U /2 holds, can be mapped onto the remaining
area of the V−�0 space.
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Consider the case without the magnetic field first. If
�0�0, the dot is in the single occupied state, and until
V��0, the transport is blocked because electrons from the
left branch do not have enough energy to overcome the Cou-
lomb blockade. Increasing voltage makes the transport out of
the stem possible, since electrons may escape to the empty
states in the right lead. However, further increase of the volt-
age stops the stem current again because for V��0+U
�when two-electron excitations become possible�, the left
reservoir supplies the stem with electrons while, at the same
time, the electrons from the stem move into the right reser-
voir. These currents cancel one another and there is no net
stem current. The situation differs for �0�0. The current
increases once V��0, when dot is excited to the single oc-
cupied state, and again when V��0+U, where the electrons
transverse through the double occupied state. In both cases,
the direction of the flux is directed into the stem and carried
by the left-lead electrons. Clearly, for the negative voltages,
the role of the right and left reservoirs interchange, but nev-
ertheless the direction of the stem current is unaffected.

In the presence of the magnetic field, more complex struc-
ture emerges due to two excitations coming into play �as the
single occupied state is no longer degenerate�. It is conve-
nient to divide the right part of the diagram into four vertical
strips �0� �−U /2,−U /2+B�, �−U /2+B ,0�, �0,B�, and
�0�B.

In the first region, the negative stem current flows in
the narrow range of voltages. Below the lower threshold
V�−�0+B, the spin-up electron occupying the dot stops the
current until the required state in the right reservoir becomes
available. Then, both spin-up and spin-down electrons can
participate in transport. For V��0+U+B, the electrons from
the left branch enter and compensate the current carried from
the stem to the right lead and, hence, the net stem current
vanishes.

In the second region, from V=0 to V=−�0+B, the dot is
occupied by the spin-up electron which blocks the current.
Beyond V=−�0+B, the spin-up states in the right lead be-
come available and this electron moves toward the right res-
ervoir. Further increase of the bias voltage results in a small
increase of the current at V=�0+U−B, when spin-up elec-
trons from the left electrode can pass through the Coulomb
blockade. Finally, there is a sign change of the stem current

at V��0+U+B because electrons of both spin directions go
into the stem from the left lead while still only spin-up elec-
trons can move into the right reservoir.

The negative stem current in the third strip starts to flow
when V�−�0+B due to the spin-up electrons moving out of
the stem into the right reservoir. This current is risen by the
spin-down electrons from the left lead at V=�0+B and also
by electrons moving through the double occupied state �for
both V=�0+U−B and V=�0+U+B�.

Eventually, in the last strip, the stem current has four
steps. These are for V=�0−B, V=�0+B when the excitations
of the empty dot to spin-up and spin-down states, respec-
tively, become energetically allowed, and for V=�0+U−B,
V=�0+U+B when electrons from the right lead have enough
energy to overcome the Coulomb blockade �due to the spin-
down and then spin-up electrons on the dot�.

Figure 5 shows how the current is affected by the mag-
netic field applied to the dot. The stem current remains posi-
tive as long as B��0 for any bias. The character of the
function changes when B crosses �0. This corresponds to the
situation when the single occupancy state has the same en-
ergy as the empty state �the electron-hole symmetry point�.
Tuning the magnetic field B=�0 enables one to measure di-
rectly electron-hole transport fluctuations.

Providing B��0, the spin-up state of the dot is below the
Fermi level of the stem, and for small voltages, the negative
current is most likely to occur. However, the increasing volt-
age forces more and more electrons to move out of the left
lead into the central branch. These electrons overbalance
those headings in the opposite direction and the current sign
changes—it is apparent for B=8�.

In two-lead systems, the tunneling magnetoresistance has
widely been studied.4–6 Defining a similar quantity in the
multiprobe setup is rather vague. Nonetheless, it turns out
that the current through the central, unpolarized lead has in-
teresting features while varying magnetization of the other
electrodes. The results are shown in Fig. 6.

The parallel magnetization �the upper part� destroys the
antisymmetry in the gate voltage, whereas the antiparallel
alignment �the lower part� breaks the bias voltage symmetry.

V

−U 0 ε0

−U

0

U

V

−U 0 ε0

−U

0

U

1.4

0

−1.4

FIG. 4. The stem current in function of the bias voltage V and
the gate voltage �0. The leads are unpolarized and equally coupled
to the dot, with coupling’s strength � /3. The picture without the
magnetic field �on the left� differs from this with field B=5� �on the
right�. The interaction energy U=20� and temperature kBT=�. The
gray scale in the far right describes the stem current value in units
e� /�.
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eΓ
h̄

]

0

0.5

1

VU 2U

B = 0Γ

B = 5Γ

B = 6Γ

B = 8Γ

FIG. 5. �Color online� The stem current for different values of
magnetic field B is plotted. Interestingly, there is a sign change in
the vicinity of V=0 for B=�0. See text for explanation. The gate
voltage is �0=6�. Other parameters are as in the previous figure.
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It is worth noting that the third lead gives not only informa-
tion about the relative magnetization of two remaining elec-
trodes but also allows one to determine polarization of each
lead. This means that in that kind of a device, we can switch
among four different states and directly read out the infor-
mation decoded in the two-lead system with the third probe.
Experimentally, it might be more convenient to swap the
magnetic field on the dot rather than to change polarization
of the side leads.

VI. CONCLUSIONS

In conclusion, we have studied Coulomb blockade in a
three-terminal device. We have focused on the bias situation
where two leads have opposite voltage, while the third lead
�the stem� is grounded. This setup allows for a direct mea-
sure of the electron-hole asymmetry of the quantum dot sys-
tem, and we have made detailed calculations of the stem
current in the gate voltage–bias voltage plane. We have
pointed to a number of predictions, which can be experimen-
tally tested.

Furthermore, we have considered the spin polarized case,
where a number of detailed experimental proposals have
been presented. In particular, a large difference in predicted
pattern between parallel and antiparallel configurations is
seen. Finally, we have checked, using a regularized version
of the usual cotunneling formalism, that our predictions are
not significantly altered by cotunneling corrections.
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APPENDIX: NONINTERACTING ELECTRON LIMIT

The limiting case of noninteracting electrons gives the
opportunity to compare the results we get within the frame-
work of the second order perturbation theory with the exact
result containing higher order terms in couplings. The quality
of the cutoff on the second order terms can be estimated. We
derive the generalization of the Meir-Wingreen formula that
will include the indefinite number of leads and calculate the
current Ji through one of the junctions.

The main result of Meir and Wingreen25 is the current
through lead i in the presence of interactions,

Ji =
ie

h
� d��Tr��i�GR − GA��n�� − �i� + Tr��iG

��� .

�A1�

This can be generalized to the many lead systems employing
the obvious identity Ji=�Ji− �1−��� j�iJj following from
Kirchhoff’s law. Providing all the couplings that are propor-
tionate, that is, �i=�ij� j where �ij are constants, one may
eliminate the lesser Green function G� by proper selection of
� showing that

Ji = −
e

h
� d��

j=1

N

Tr�A
�i� j

�
��n�� − �i� − n�� − � j�� ,

�A2�

where we introduced a shorthand notation ���i�i and
wrote the formula for the current Ji in terms of a spectral
function A� i�GR−GA�.

For noninteracting electrons,
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1.0
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FIG. 6. The stem current for different polarizations of leads and
magnetic field B=5�. The central branch is always unpolarized. In
the upper row, both left and right leads are spin-up polarized, Pl

= Pr=1 �the left plot�, or spin-down polarized, Pl= Pr=−1 �the right
plot�. Due to nonzero magnetic field, the spin symmetry is broken
and the stem current is no longer an odd function of the gate voltage
with respect to �0=−U /2. In the lower row, polarization of the left
and right leads is antiparallel �Pl=1, Pr=−1 on the left and Pl=
−1, Pr=1 on the right�. In this case, the current symmetry in V is
violated because the dot couples to the left and right leads asym-
metrically. The other parameters are as in the previous figure.

Js[
eΓ
h̄

]

-0.015

0.015

�0−2B −B B 2B

FIG. 7. �Color online� The strict result for the stem current
�thick, black� compared to the perturbative result: sequential �dot-
ted, blue�, cotunneling �dashed, green�, and their sum �thin, red�.
Parameters are as in Fig. 2 �except for U=0�.
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A��,�� =
�

�� − ���2 + ��

2
2 �A3�

describes a spin-dependent spectral function, which substi-
tuted to the generalized Meir-Wingreen formula gives the
exact current in lead i for the multiterminal device, valid to
any order in couplings,

Ji = −
e

h
�i�

j
�
�

� j� d�
n�� − �i� − n�� − � j�

�� − ���2 + ��

2
2 . �A4�

We note in passing that the same result comes from the non-
interacting Landauer-Bütticker formalism for any number of
electrodes.

Using the similar methods as described in Sec. IV C, we
derive the current through junction i that depends on cou-
pling � up to any order,

Ji = −
4e

h
�i�

j
�
�

� j Im��0���,�i,�� − �0���,� j,���

�A5�

and

�0��0,�,�� � �0�1

2
−

�

2�i
��0 − �� +

�

4�
� . �A6�

In Fig. 7, the exact result is compared with the perturba-
tive one. The good agreement between these two justifies the
choice of the method and reassures that the second order
perturbation theory gives not only excellent quantitative de-
scription, reachable also within the sequential tunneling
framework, but also good qualitative estimation, at least for
noninteracting electrons. Note, however, that this conclusion
is only valid in the regime where ��kBT, whereas in the
opposite limit, the perturbation expansion clearly fails, and
one does not expect the good agreement.
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